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AN EVALUATION OF LINEAR ACOUSTIC THEORY FOR A HOVERING ROTOR 

Charles E. K. Morris, Jr. 
Langley Research Center 

F. Farassat 
Joint Institute for Advancement of Flight Sciences 

Paul A. Nystrom 
Langley Research Center 

SUMMARY 

Linear acoustic calculations are compared with previously reported data 

for a small-scale hovering rotor operated at high tip Mach numbers. The 

theoretical results were based on a detailed calculated description of the 

distributions of blade surface pressure and shear stress due to skin friction. 

The noise due to skin friction and loading, in the rotor disk plane, is found 

to be small compared to thickness noise. Thus, the basic conclusions of 

Boxwell, et al ~ about the importance of nonlinear effects are upheld. 

Some approximations involved in the current theories for the inclusion 

of nonlinear effects are discussed. Using a model nonlinear problem, it is 

shown that to use the acoustic analogy, good knowledge of the flowfield is 

required. Since the quadrupole noise calculation based on acoustic analogy 

involves extensive numerical work, it is argued that the results of linear 

acoustic theories should be corrected using an analytic approach which does 

not separate the aerodynamic and aeroacoustics problems. 

INTRODUCTION 

One of the current challenging problems of aeroacoustics is the predic­

tion of the nOlse from high-speed propellers and helicopter rotors. In the 

last decade, many researchers have addressed this problem with the result that 



understanding of the noise generation mechanisms involved has been substan­

t1ally improved. It was natural that the first mathematical formulations of 

this problem be based on linear equations. Perhaps the most important contri­

bution in this field, from which many of the current noise prediction tech­

niques have evolved, is the paper by Ffowcs Williams and Hawkings (ref. 1). 

In this paper, using acoustic analogy, they derived the now famous Ffowcs 

Williams-Hawkings equation (FW-H eq.). As is well-known from the jet noise 

theory, the nonlinear effects associated with large flow velocities are rele­

gated to a single term involving the Lighthill stress tensor. By dropping 

this term, the current linear acoustic formulations can all be shown to be 

equivalent to the solution of the resulting simplified FW-H equation. 

Recently, several authors have found that linear acoustic calculations 

for propellers and rotors fail to agree well with data for cases with substan­

tial amounts of transonic flow. The linear methods underpredict both the 

width and amplitude of the main pulses of blade-passage noise (refs. 2 and 3). 

The neglect of the effects of nonlinearities 1S blamed as the cause of the 

underpredictions. Incomplete aerodynamic input data are used in the applica­

tions of linear acoustic theory in the published literature. For example, 

from the study of the governing acoustic equation, one may show that the 

force due to skin friction and the component of the force along the blade 

chord due to surface pressure generate noise with peaks in the rotor plane. 

Because the aerodynamic input data for calculation of these effects are 

difficult to obtain, they are generally neglected. 

The aim of this paper is to evaluate the linear theory by using reliable 

geometric and aerodynamic input data in linear acoustic calculations for 

comparison with recently available experimental data by Boxwell, Yu, and 
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Schmitz (ref. 4). These data were obtained from a hovering 1/7-scale model of 

a UH-1H rotor operated at tip Mach numbers ranging between 0.8 and 1.0. The 

linear acoustic calculations in the present paper are based on a formulation 

involving integrals over the blade surface with observer time differentiation 

before the far-field integral (ref. 5). The blade spanwise distribution of 

effectlve angle of attack is obtained with the prescribed-wake, hovering-rotor 

method of Langrebe (refs. 6, 7, and 8). The pressure and skin-friction distri-

butions on the blades are obtained with the transonic airfoil-analysis program 

of Bauer, et al (refs. 9, 10, and 11). 

The current efforts to study nonlinear effects are all based on the 

acoustic analogy. Some problems associated with application of the acoustic 

analogy are discussed by studying the sound from a pulsating sphere. The 

difficulties associated with the use of acoustic analogy indicate that a 

direct approach for the study of nonlinear effects using the perturbation 

technique for a simplified problem, such as the nonlifting rotor, may be more 

fruitful than using the acoustic analogy. 

This report expands on the presentation of some of this work in 

reference 12. 

A 

a 

SYMBOLS 

generalized flow parameter (see eq. (2)) 

radius of sphere, m 

p-~ 
airfoil pressure coefficient 2 

1 

rotor thrust coefficient, 

~ p~ 

rotor thrust 
TIR2p(~R)2 
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c 

+ 
n 

p 

pi 

R 

r 

+ 
r 

r, 
1 

s 

s 

T 

T .. 
lJ 

t 
t 

rotor torque coefficient, rot3r tor~ue 
7TR p{nR) 

speed of sound in undisturbed medium, m/sec; or airfoil chord, m 

, f '1 k' f' t' ff' , t viscous shea
2
r stress, N/m2 alr 01 s 1n- rlC 10n coe 1c1en, -----'~----=,..-~--

1 2" pv 

airfoil section lift coefficient 

force per unit area on a fluid in the observer direction, N/m2 

Mach number in the radiation direction (see eq. (l)) 

rotor tip Mach number, ~R 

nonlinear first-order radial velocity, nondimensional {see eq. (C-ll)) 

local unit outward normal 

nonlinear first-order acoustic pressure, nondimensional 

{see eq. (C-l 0) ) 

local static pressure at a point, N/m2 

acoustic pressure, N/m2 

rotor radius, 1.045 m 

distance between source and observer, Ix-yl, m; or distance from 

center of pulsating sphere, m. 

radiation vector, ++ 
x-y 

unit vector along radiation direction, r/lrl 
blade surface area, m2 

renormalization variable {see eq. (C-7)) 

period of blade passage, sec 

Lighthill stress tensor 

local unit tangent 

observer time 
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ul first order fluid velocity (see eq. (3)), m/sec 

v. local blade velocity 
1 

vn local normal velocity on the blades 

x airfoil chordwise coordinate, measured from leading to trailing 

edge, m 
-+ x observer position vector 
-+ y source position vector 

a airfoil angle of attack (angle between chord line and airstream 

y 

cS( 

cS •• 
lJ 

E 

p 

a 

w 

Subscripts 

a 

t 

co 

vector, degrees; or variable of eq. (5) 

ratio of specific heats of the medium 

Dirac delta function 

Kronecker delta 

perturbation parameter (see eq. (2)) 

mass density of air, kg/m3 

viscous blade-surface tangential stress 

velocity potential 

rotor rotational speed, radjsec 

frequency of oscillation, Hz 

undisturbed medium 

boundary layer transition 

freestream conditions 

retarded time 
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LINEAR ACOUSTIC THEORY AND AERODYNAMIC INPUT 

Since the available experimental data are for a hovering rotor, a computer 

program already developed for high-speed propellers was used for linear acou­

stic calculations. The subsonic part of this computer program uses a solution 

of the FW-H equation in the following form (ref. 5). The acoustic pressure 

pi (x. t) is given by 

dS 

J 
R, 

+ [2 r ] dS 
bl d r !l-M ! ret a es r 

(1) 

" where Mr = v.r./c. Because the helical tip Mach number of the rotor is less 
1 1 

than one, the Doppler term, !l-Mr !-l will not produce a singularity. 

Equation (1) is valid in both near and far fields. To use this equation 

for numerical calculation, the blades are divided into small panels. For each 

panel, the retarded time is found first, and then the integrands in eq. (1) 

are evaluated. The force on the fluid, ~., must be known at this stage and 
1 

is supplied by other means discussed below. The integrals in eq. (1) are 

approximated by discrete sums over all the panels, and the first integral 

is differentiated numerically to get the acoustic pressure pl(X,t). At all 

these steps, the observer position -+-
x and time t are kept fixed. Varying 

t in a prescribed interval results in an acoustic pressure signature which 

is generally very smooth. The precise rotor geometry is accounted for in the 

acoustic computer program. The program is described by a flow chart in figure 

1 and discussed in Appendix A. 
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The acoustic pressure described in equation (1) is treated as having 

several components. Thickness noise is the component described by the term 

involving v, the local normal velocity on the blade. At each point on the 
n 

7 ~ ~ 
blade, the force on the fluid may be expressed as the vector sum ~ = pn + at 

~ + 
where nand t are the unit outward normal and unit tangent (in the direc-

tion of blade motion) to the blade surface, respectively. The loading noise 

component of p(x,t) is described by the term involving the surface pressure p 

1n equation (1). Skin-friction noise is described by the term involving a, 

shear stress on the blade surface. The distributions of a and p are obtained 

by the combined use of several computer programs for aerodynamics. 

Aerodynamic inputs for the acoustic methods were obtained with modified 

versions of existing computer programs for predicting aerodynamic character­

istics for airfoils and hovering rotors (Appendix B). The manner in which the 

programs were coupled is shown schematically in figure 2. The required inputs 

for the hovering rotor program (ref. 6) include airfoil data tables, rotor 

geometry and test conditions. The key output is the spanwise distribution of 

effective angle of attack (as influenced by nonuniform downwash and three­

dimensional flow). The computed angle of attack then serves as an input when 

the transonic airfoil program (ref. 10) is utilized to obtain detailed pressure 

and skin-friction distributions at a series of spanwise blade stations. These 

distributions yield the values of p and a required for the acoustic program. 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

Experimental data.- The experimental data used here are reported in 

reference 4 for a 1/7-scale model of a UH-1H rotor operated at high tip speeds 

and low disk loading. The two-bladed rotor was run in an anechoic room 

designed to reduce recirculat10n. The microphone was located in the rotor 
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plane 1.5 diameters {3.14 m} from the rotor center. Rotor geometry and test 

conditions are described in Tables I and II, respectively. A detailed descrip­

tion of the test facilities and measuring equipment are found in reference 4. 

Aerodynamics.- Several steps preceded the utilization of the hovering rotor 

program of Landgrebe. First, a subcritical airfoil-analysis program {ref. 13} 

was used to guide the prediction of laminar-to-turbulent transition points for 

the airfoil boundary layer. The predicted transition characteristics, shown 

in figure 3, were required inputs for the transonic airfoil program. This 

latter program and the wind-tunnel data of reference 14 were used to construct 

airfoil-characteristics tables for the hovering rotor program. The airfoil 

lift characteristics~ shown in figure 4, are for an NACA 0012 airfoil as 

influenced by the operating conditions of the test rotor of reference 4. {The 

portion of those tables actually used by the rotor program for the present 

report are indicated by the location of the curves of lift coefficient and 

Mach number calculated for three test conditions.} 

Rotor geometry and test conditions {Tables I and II, respectively} were 

also required inputs for the prescribed-wake rotor program. Rotor rotational 

speed was adjusted to give tip Mach numbers ranging from 0.6 to 0.962 for a 

sonic speed of 340.3 m/sec. Fifteen lifting-line segments modeled each blade: 

five segments stretched from 0.144 to 0.8 radius, and ten segments, 0.02 radius 

wide, represented the remaining outboard end. 

Some results of the rotor-program calculations are shown in figures 4, 5, 

and 6. The peaks of the data curves at the outboard blade region in figure 5 

indicate the effect of tip-vortices on the local downwash velocity and, hence, 

on effective angle of attack. The influence of compressibillty effects on 

drag rise is shown in figure 6. The high-speed regions at the blade tips 

produce most of the drag and require most of the power. 
8 



The transonic airfoil code was then used to calculate details of the 

blade-surface flow condition at fifteen spanwise positions for each tip speed. 

Angle-of-attack data, such as given in figure 5, transition values from 

figure 3, and calculated values of Reynolds and Mach numbers constituted the 

input list for each airfoil flow condition. All fifteen data sets required for 

one rotor tip-speed condition were obtained in one computer run. 

Outputs from the transonic airfoil program were used in dimensional form 

by the acoustic program. A set of 30 data points was supplied for each blade 

section for pressure and for shear values. The first ten points were located 

in the first seven percent of the blade section. This distribution of points 

reflects attention given to requirements for adequate definition of contours 

under a wide range of conditions. Figure 7 shows details of the distributlons 

of blade surface pressure, p, and shear stress, cr, for the sample case with 

0.9 tip Mach number. (The pressure plots are staggered to the right and the 

shear stress are staggered obliquely to make each curve more easily distinguish-

able.) Trailing-edge oscillations for some cr curves are related to separa­

tion phenomena; they signlfy the breakdown of the boundary-layer model used in 

the computer program. These oscillations have a negligible effect on the 

acoustic calculations. 

Aerodynamic predictions of the prescribed-wake and the acoustic programs 

are compared in figures 8 and 9. The acoustlC program obtains these results 

by integrating both pressure and shear distributions on the blades, whereas the 

prescribed-wake program obtains its final results with airfoil tables and 

correction factors. Flgure 8 shows that the two methods are in good agreement 

on spanwise loading, except for the tip at the highest tip speed. The 
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differences in rotor thrust and torque curves reflect primarily the effect of 

the wake-program correction factors (fig. 9). 

Acoustics.- The acoustic pressure signatures of figure 10 were produced by 

utilizing aerodynamic data, such as those given in figure 7, with the linear 

acoustics program. It is seen that all the noise components are strong func­

tions of blade tip speed and that the dominant noise mechanism is due to blade 

thickness. At a tip Mach number of 0.80, the skin-friction noise is greater 

than the loading noise while at the higher tip Mach numbers the opposite is 

true. The waveforms of these two noise components are such that they vary in 

opposite directions tending to cancel one another. Compared to thickness 

noise, skin-friction noise is negligible as shown in these figures. 

The relative insignificance of skin-frictlon noise is also shown in 

figure 11. This figure shows the calculated overall sound pressure levels of 

thickness, loading and skin friction noise as a function of tip Mach number. 

For comparison, the overall sound pressure level of the combined effects of 

these three mechanisms is also shown in this figure. Only thickness noise is 

seen to be significant in the rotor plane; loading noise becomes relatively 

large out of the plane; skin-friction noise is small in all cases. 

The calculated and measured overall acoustic pressure signatures are shown 

in figure 12. It is seen that the inclusion of the loading and the skin­

friction noise in the overall acoustic pressure signatures has only changed 

slightly the peaks in the signature due to the thickness noise alone. This 

has only resulted in slightly better agreement with the experimental wave-

form shapes than those reported in reference 4. The theoretical and measured 

acoustic spectra for tip Mach number 0.80 through 0.962 are presented in 

figure 13. Thus the calculations of this report uphold the conclusions of 
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Boxwell et al (ref. 4) which were based on theoretical calculations of thick­

ness noise alone. Basically, these conclusions refer to the width of the main 

pulse and the level of the pulse, described by its peaks, of the acoustic 

pressure signatures. These are: 

i) linear acoustic theory predicts the pulse width and shape 

correctly at lowest tip speed (Mt = .8) but underpredicts the width and 

fails to account for the steepening of the pulse at near sonic speed 

(Mt = 0.962). 

ii) linear acoustic theory predicts correctly the main peak of 

the pressure signature at near sonic speed but underpredicts (by a 

factor of almost 1/2) the main peak at Mt = 0.8. As the acoustic 

spectra show (fig. 13) the spectrum levels are also mostly under­

predicted over the whole range of tip speeds. 

Our experience with high-speed propeller and helicopter rotor noise 

calculations substantiates the above conclusions. However, the degree of the 

underprediction in the levels of the harmonics for the cases reported here 1S 

unexpectedly high. The reason for this is unknown to us. Better agreement 

between linear acoustic theory and experiment is reported by Farassat and 

Brown (ref. 15), Johnson and Lee (ref. 16), Mixson et al (ref. 17) and Woan 

and Gregorek (ref. 18). 

Nonlinear flow effects around the blades have been suggested by Hanson 

and Fink (ref. 2) and by Yu, Caradonna and Schmitz (ref. 3) as the cause of the 

discrepancies between theoretical linear acoustic predictions and measured 

data. The present results 1nd1cate that this suggestion is correct. In the 

next section some remarks concern1ng the application of the acoustic analogy to 

include the nonlinearities are presented. A possible alternative to this method 

is also proposed. 
11 



REMARKS ON THE APPLICATION OF ACOUSTIC ANALOGY 

IN THE STUDY OF NONLINEAR EFFECTS 

Although the concept of acoustic analogy is mathematically sound and there 

is little doubt that one can calculate the acoustic pressure provided that all 

sources and source strengths are known, one is forced to approximate the source 

strengths in practical situations. The question of how well one must approxi­

mate the source strengths to be able to calculate the level and the basic 

features of the acoustic pressure signature has not yet been answered. It is 

a well-known fact that what is called the solution of the FW-H equation ln the 

acoustic literature is actually an integral equation. The very unknown that 

one is solving for also appears in the integrand of the solution. The appeal 

of the acoustic analogy so far has been that relatively little information 

(blade geometry and load) is required to calculate the noise of a rotating 

blade throughout the space around it. Much more information is now needed 

(the flow field around the blade) to include nonlinear effects using quadrupole 

sources. 

Both Hanson and Fink (ref. 2) and Yu et al (ref. 3) start with equivalent 

forms of the solution of the FW-H equation involving the quadrupole source 

term. Hanson and Fink preferred to work in the frequency domain. Hanson and 

Fink's expression for quadrupole noise takes into consideration the discon­

tinuities produced by shock waves on the blades, but in their numerical work, 

two-dimension flow around each blade strip was used to calculate the quadrupole 

source strength. The two-dimensional flow assumption may be reasonable only 

near the blade surface and away from the blade tip region. Near blade tips 

the deviation between two- and three-dimensional flow calculation is significant. 
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This fact was recognized by Yu et a1 who found that quadrupole noise calcula­

tions based on a two-dimensional flow model overpredicted the measured data. 

However, when a three-dimensional flow model was used and only the quadrupole 

sources up to the sonic surface in the rotating frame (blade-fixed) were 

considered, the calculations underpredicted the measured data. The restriction 

of sources to extend up to the sonic surface is itself an approximation which 

is forced on the authors because of the singularity in their acoustic formula­

tion. This singularity is artificial and appears because of the use of blade­

fixed coordinates. The discontinuities in flow parameters due to shock waves 

WhlCh may contribute to the radiated noise (refs. 19 and 20) were neglected 

in the approach of Yu et a1. 

The above discussion is intended to point out that there are many 

approximations that one is forced to introduce to include nonlinear effects in 

the acoustic calculation. Although all these approximations appear rational 

and logical, only extensive numerical calculations and comparison with experi­

mental data can justify their appropriateness. It is, however, easy to show 

by the following nonlinear model problem that the flow field around the blades 

should perhaps be known to a high degree of accuracy. 

The model problem which is studied here is that of a pulsating sphere 

in a medium with no mean flow. The sphere is assumed to pulsate with a 

surface velocity of the order of the normal velocities found on most parts of 

a conventional high-speed rotating blade. The pulsation frequency is assumed 

high enough so that the boundary conditions of the problem may be specified 

on the mean position of the sphere surface. (The effect of this assumption 

will be discussed later.) This problem can be solved by several perturbation 

techniques. Linear (first order) approximation does not exhibit the wave 
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steepening phenomenon and the formation of spherical shock waves separated by 

a wavelength of oscillation (ref. 21, chap. 9). The question is whether one 

may approximate the quadrupole strength in the FW-H equation, based on the 

first order solution of the problem, which can be obtained quite easily, to 

study such nonlinear phenomena. 

The small parameter £ of the problem will be taken as the maximum of 

the sphere surface Mach number. If each flow parameter A (e.g., p and p) 

is expanded as 

then the Lighthill stress tensor will become, up to the second order, 

where Co is the speed of sound in the medium without the presence of the 

disturbance (same as c in eq. (1)). In eq. (3), y is the ratio of the 

(2) 

(3) 

specific heats of the medium, and uli is the first-order velocity of the 

fluid with respect to the undisturbed medium. The solution of this problem 

formulated by acoustic analogy may be obtained numerically to find the acoustic 

pressure p,(x,t). One may have to assume P2«Pl on the surface of sphere 

at this stage, which is again a reasonable assumption. This method will not 

be attempted here because the same result can be obtained by solving for the 

second-order velocity potential of the acoustic field around the sphere. Some 

of the details of the following discussion are presented in Appendix c. 
The differential equation for the second order velocity potential ~2 is 

2 
1 d ~2 2 

'V ~2 = 7?- (4 ) 
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This equation can be solved analytically. If the 

radius of sphere is a and it is pulsating with the surface velocity 

v = a~,2 +1 exp[-i(wt+8)] where a l = ka, k = w/cO and 8 = tan-l(l/a ' ), 

then one can show that 

2 14 
= a a [I(rl)+ C] exp (2HJ. 

2wr ' 

Here rl = kr , ~ = rl-al-wt and 

I(r') = Y;l lnr' - :1 -r(- exp(-4ir')[Ci{4r') 

+ i Si(4r ' )] 

The symbols Ci and Si stand for the cosine and sine integral functions, 

respectively, and the complex constant C is given by 

2ia '+l 1 1 
C = 2ia'-l I(a ' ) - 2ia'-l {4 + i [ar + (y+l)a'lna ' ]} 

(5) 

(6) 

(7) 

Had the boundary condition been used on the actual surface of the sphere 

instead of its mean position, the expansion of the boundary condition would 

result in a second-order normal velocity term. This would affect equation (7), 

which is a constant term. In this case all the preceeding conclusions regarding 

this problem will remain true. 

It can be shown that 

PI _ a</>2 1 (2 2 2 2 ) 
2 - - Po ---at + 2 c 2 P1 - Po Co ul 

Po 0 

By differentiating equation (5), we can find that the dominant term is 

logarithmic: 
15 
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(9) 

This means that beyond some distance from the sphere center, pl2 will be 

larger than pll obtained from the linearized solution. Also the frequency 

of the acoustic oscillation will be the 2w instead of w. Since 

pi = pll + pl2 + 0(£3), the solution obtained by using acoustic analogy behaves 

the same. But this is absurd; it signifies the fact that the perturbation 

solution is not valid far from the sphere and a singular perturbation problem 

exists. Thus a reasonable approximation (the description of quadrupole strength 

using first-order veloclties) in the use of the acoustic analogy has lead to 

wrong conclusions concerning the wave behavior far from the sphere. 

The nonlinear solution of this model problem can be obtained by the 

renormalization method described in Appendix C (choosing the prlmltive variable 

pl2 to be renormalized (ref. 22)), the analytical method of characteristics 

(refs 22 and 23) or the nonlinearization method discussed by Whitman (ref. 21). 

All these methods give the same result: there is always both wave steepening 

and shock wave formation but at a slower rate than finite amplitude one­

dimensional waves (ref. 21). This wave steepening is clearly observed in the 

data of Boxwell et al at the highest tip Mach number. 

An example of the wave-steepening effect for the illustrative case of an 

oscillating sphere is shown in figures 14 and 15. As shown in Appendix C, the 

equations for the nonlinear first-order acoustic pressure and radial velocity 

of the fluid are given by 
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a ,2 M 
Pl 

S sin (s) - -
rVa

,2 
+ 1 

a ,2 M -J r,2 + 1 
Ml 

S cos (s + 8). = 12 12 + 1 r a 

The sphere for the two figures has a radius of 0.1 m and the amplitude of the 

surface Mach number is taken as 0.1. It is oscillating at 2000 Hz. It is seen 

that on the sphere surface, the velocity and pressure are out of phase and 

are oscillating at 2000 Hz. However, at a distance of 1.2 m (rl = 36.96), where 

a shock is formed, the velocity and pressure are in phase, and the wave form 

contains many harmonics. This latter phenomenon is basically a nonlinear effect. 

(The increase in signal width shown in figure 12 is another significant result 

of nonllnear effects.) 

The above discussion relates to the problem of rotating blade noise 

because current efforts to account for nonlinear effects are all based on the 

use of acoustic analogy by including the quadrupole sources in noise calcula­

tions (refs. 2 and 3). Acoustic analogy was developed by Lighthill for the 

problem of jet noise generation where the source region is confined to the 

turbulent volume of the jet which is generally small in comparison with the 

region where the noise is calculated. In the case of high speed rotors and 

propellers, the quadrupole source region is extended and often overlaps with 

the region where acoustic pressure is required (in fuselage noise calculation, 

for instance). Since accounting for nonlinear effects while using acoustic 

analogy may require a good knowledge of the near-field, as shown ln the case 

of the above model, it seems plausible that a more direct approach to the 
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problem should be made. The aerodynamic and aeroacoustic problems can no 

longer be separated as commonly done in applying the acoustic analogy. It is 

very likely that the idealized problem of the non1ifting rotor with sharp 

leading edge can be attacked using a perturbation approach. The associated 

boundary-value problems should preferably be solved in closed form to observe 

the behavior of the acoustic waves. The perturbation problem is expected to 

be singular because of the infinite domain (ref. 23). From comparison of 

linear acoustic calculations with experimental data, it also appears that the 
2 asymptotic sequence involved in the perturbation is not the usual E,E, 

sequence. If this sequence is ~i(E)' i = 1, 2, ... , then because of the 

magnitude of the correction required to improve linearized results, it follows 
2 that ~2(E) is much larger order than E. 

CONCLUDING REMARKS 

An analytical study has been conducted to evaluate the accuracy with which 

linear acoustic methods can model the acoustic characteristics of rotor blades 

operated with transonic tip speeds. Using full aerodynamic data as input, 

linear acoustic calculations are presented and compared with measured cases 

reported by Boxwell, Yu and Schmitz. Depending on the blade tip Mach number, 

linear acoustic theory is shown to underpredict the peaks, width or wave­

steepening effects for the main pulse of the acoustic pressure signature. Also, 

the noise component due to skin friction was shown to be virtually negligible 

compared to thickness noise. For inp1ane acoustic calculations, the thickness 

source mechanism was shown to be more significant than the blade loading 

sources. These results uphold the conclusions of Boxwell, Yu and Schmitz 

concerning the importance of nonlinear effects. 
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Some of the approximations involved in the application of acoustic 

analogy using quadrupole sources are discussed. By means of a model nonlinear 

problem it was shown that even a reasonable approximation of the flow field 

around a pulsating sphere, that is, the use of quadrupole source strength 

based on first-order fluid velocity, can result in wrong conclusions about 

the nature of the acoustic field. The requirement of good knowledge of 

quadrupole source strength in the near field implies that the aerodynamic 

and aeroacoustic problems must not be separated for high-speed rotating 

blades. It is suggested that the perturbation approach be used to study the 

nonlinear flow effect for a related idealized problem. 
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APPENDIX A 

ACOUSTIC COMPUTER PROGRAM 

To properly implement equation (1), it is necessary to accurately 

describe the blade in three dimensions and to have a good description of the 

blade-surface aerodynamics. The followinq is a brief description of both the 

geometry used in the computer program and required inputs. The generation of 

inputs describing local aerodynamics is discussed in a subsequent section. 

The blade surface is represented by a series of panels. A conventional 

rectangular division scheme may give a poor approximation near the leading 

edge; therefore, a curvilinear coordinate system was selected. For each 

blade, a rotating Cartesian frame (n - frame) was set up such that the n2-axis 

lies spanwise along the pltch-change axis of the blade and the n3-axis 

extends along the shaft axis. The origin of this frame is located at the 

rotor (or propeller) center. A new variable, Q, is introduced in the chord­

wise direction and is defined as a distance along the local mean chord, 

measured from the leading edge and divided by the local chord. In the case 

of a rectangular blade, the Q and nl axes are coincident. The coordinates 

(Q, n2' n3) specify the blade surface completely. The blade is segmented by 

constant-n2 planes normal to the pitch-change axis and by constant Q curves 

on the blade. For the rotor in use, these elements of area are rectangles 

lying on a slightly curved surface. 

The full set of required inputs includes details of the rotor configura­

tion, local aerodynamics and test conditions. The geometric parameters 

include number of blades, blade radius and both the local values and local 

spanwise derivatives of the following: 
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a) blade pitch 

b) blade chord 

c) thickness ratio 

d) leading-edge coordinates 

For the midpoint of each segment (between the constant-n2 planes and Q 

curves) for each surface, the following inputs are required: 

a) thickness coordinate 

b) derivative of thickness coordinate with respect to Q 

c) aerodynamic pressure normal to local surface 

d) skin friction value 

The operating conditions for the program consist of rotor rotational speed, 

speed of sound and air density. 

Acoustic results are obtained with the process described by the block 

flow chart of figure 1. To perform the required time differentiation on the 

blade integral in equation (4), the contributions of each panel are summed 

for a given observer time, t. The process is then repeated for the observer 

time, t + ~t. Differentiation is then done numerically. Note that equation 

(4) is written for an observer fixed with respect to the medium. (To perform 

the differentiation with a moving observer, the observer position is frozen at 

the observer time t for the calculation at observer time t + ~t.) After 

all the calculations have been performed, the acoustic pressure signature is 

Fourier analyzed to give an acoustic-pressure spectrum in blade harmonics. 

Also, values of thrust and power are calculated based on integration on 

the blade-surface pressure and shear values. 
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APPENDIX B 

AERODYNAMICS COMPUTER PROGRAMS 

Hovering Rotor Program 

The prescribed wake analysis discussed in references 6, 7, and 8 was 

employed to predict blade aerodynamics and rotor-wake characteristics. The 

first part of the program generates a wake geometry based on aerodynamic and 

configuration input. Two key wake parameters, functions of rotor geometry 

and thrust, determine the tip vortex geometry. A second part of the program 

determines the distributions of both the vortex-element circulation and 

induced velocity for the rotor-and-wake model. Each blade is represented by 

a lifting-line segment; the wake is modeled with a lattice of vortex filaments 

that trail as a complex surface behind each blade. Strong filaments at the 

tip roll up into a tip vortex representation. Interactive calculations 

determine a compatible pattern of circulation values and detailed geometry 

for each filament of both the wake and rotor elements. The third part of the 

program uses strip-theory aerodynamics and airfoll-table data to compute 

performance parameters. 

The program of this study differs from that of reference 6 in two respects. 

New programing incorporated tip-relief effects on lift and drag from reference 

24. Also, the program logic was modified to remove iterations of blade pitch 

to achieve desired thrust coefficients. Instead, since blade pitch was fixed 

in the experiment, the thrust estimates governing wake geometry were adjusted 

iteratively to provide a match with the final computation of thrust 

coefficient. 

Several strengths and weaknesses of the program are significant. 

Reference 7 offers the conclusions that wake geometry appears to be insensitive 
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APPENDIX C 

NONLINEAR FLOW EFFECT FOR A PULSATING SPHERE 

This problem was treated by Whitham as an example of a nonlinearization 

technique (ref. 20). The basic nonlinear phenomena associated with this 

problem are therefore known. It was mentioned in the main text of this paper 

that this problem was used to test the acoustic analogy using input data from 

linear theory. Here some of the mathematical details of this problem will 

be presented. 

Using an expansion of the type in equation (2) for the velocity potential 

¢. the first-order term can be shown to be 

(C-l) 

The function f is determined by specifying the velocity on the sphere. 

The second-order velocity potential is given by equation (4). Using complex 

notation and thus simplifying manipulations greatly. the sphere surface 

velocity is taken as 

v = a~ exp [-i(wt + e)] (C-2) 

where a is real. 

This results in the following form of ¢l: 

(C-3) 

In what follows. only the real parts of complex quantities have physical 

meaning. 

Equation (3) for ¢2 becomes 
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where f3 

+ 4kr} exp (2i~) 

242 = a a w/(2cO ). The boundary conditions on this equation are: 

a</>2 
(i) ar (a, t) = 0 

(ii) </l2-+ 0 as r -+ 00 

(iii) </l2 satisfies the outgoing wave condition. 

Assuming a solution of the following type for equation (C-4): 

the equation for finding B(r) becomes 

(C-4) 

(C-5) 

(C-6) 

The homogeneous solution of equation (C-6) which will result in an out­

going wave solution of equation (C-4), is a constant. A particular integral 

of equation (C-6) is easily obtained by integrating both sides of this equation 

once and then finding an integrating factor for the left side of the resulting 

equation. After applying the boundary conditions, equation (5) 1S obtained. 

It is seen from equation (9) that the perturbation method breaks down far 

from the sphere center. To obtain the first-order solution valid in the 

far-field, the renormalization technique will be used. It is much simpler here 

to apply the method suggested by Pritulo (ref. 23). It is seen here that ~ 
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in equation (C-5) actually is the outgoing characteristic variable. A new 

variable s is introduced as follows: 

l; = s + aSl ( s, r I) + ••..•.. 

l; (s, a ' ) = s (C-7) 

This is substltuted in P'2 and the resulting expression is expanded as a power 

series in a. To get rid of the secular term involving ln rl in P'2' we 

should have 

(C-8) 

This will give 

S (rl s) = -(Y+ 1) a
,2 

l' 2 c a 
1 n (ra

l
) sin ( s ) (C-9) 

The nonlinear first-order acoustic pressure and radial velocity of the fluid 

in nondimensional form are 

sin(s) (C-10) 

cos(s + e) (C-ll ) 

where Pl = Pl'/(Poc02), Ml = vl/cO and Ms is the amplitude of the surface 

Mach number of the sphere based on cO. The phase angle e is given by 

e = -tan- l (l/r'). (C-12) 

The varlable l; is given by equation (C-7) and can also be written as follows 
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(Y+ 1) a,2 M 
~ = s ______ s_ 

iVa,2 + 1 

ln (~:) sin(s) (C-13) 

All the above equations are valid up to the location where the first shock 

appears near the sphere surface. 
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TABLE 1.- ROTOR GEOMETRY 

Hub type .. 

Radius 

Chord. 

Taper 

Twist (root-to-tip). 

Blade pitch (at tip) 

teetering 

1.045 m 

0.0762 m 

1.1 

-10.91° 

Airfoil ...... . . NACA 0012 

TABLE 11.- ACOUSTIC PROGRAM TEST CONDITIONS 

Mt 
c n Po 

{m/sec} (rpm) (kg/m3) 

.80 340.75 2491. 1.2333 

.88 339.64 2732 1 .2133 

.90 339.70 2793 1. 2144 

.962 340.46 2994 1.2281 
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Figure n. - Calculated overall sound pressure level for combined 
and separate component noise at 3 rotor radii from 
rotor center. 
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Figure 13. - Comparison of theoretical acoustic pressure spectra 
in rotor plane at 3 rotor radii from rotor center. 
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